ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

SECURING 4 G NETWORKS WITH Y-COMMUNICATION USING AKA PROTOCOL

Priya Rana

Sr.Lecturer,

Department of Information Technology,

RKGIT, Ghaziabad.

Email: priyarana237@gmail.com

ABSTRACT:

The computer society has not yet agreed on a standard method to measure data security and consequently to date no specific security metric has been defined for routing purposes. Since designing an efficient security module requires a clear identification of potential threats, this paper attempts to outline the security challenges in 4G networks. A good way to achieve this is by investigating the possibility of extending current security mechanisms to 4G networks. Therefore, this paper uses the X.805 standard to investigate the possibility of implementing the 3G's Authentication and Key Agreement (AKA) protocol in a 4G communication framework such as Y-Comm. The results show that due to the fact that 4G is an open, heterogeneous and IP-based environment, it will suffer from new security threats as well as inherent ones. In order to address these threats without affecting 4G dynamics, Y-Comm proposes an integrated security module to protect data and security models to target security on different entities and hence protecting not only the data but, also resources, servers and users.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

Keywords: AKA protocol, 4G systems, IEEE X.805, Y-comm

I. INTRODUCTION

The fourth generation of cellular communication systems, generally known as 4G, is the emerging technology of future wireless networks. For the past years, many researchers and scientists from all over the world have been working on projects funded by governments and business institutions whose goals are efficient wireless networks by merging all current technologies and adapting new solutions for the enhanced telecommunication which provides superior quality, efficiency, and opportunities where wireless communications were not feasible. Some researchers define 4G as a significant improvement of 3G where current cellular networks' issues will be solved and data transfer will play more significant role.

Due to some security weaknesses in 2/2.5G networks and the need to support voice and data transmission, third generation (3G) networks have been recently deployed. The general concepts of 4G can be present in the list as follows:

- improved capacity
- increased number of users in the cell
- lower transmission costs
- connection with already existing systems
- lower latency
- based on IPv6 protocol, with packet switching
- single interface for all wireless connections
- increased mobility
- support for media applications
- seamless connectivity
- improved security

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

• improved and guaranteed Quality-of-Service

• global roaming of networks

• standardized open interface

• self-organizing networks

• fast response

In 2G we faced security weaknesses which were tackled in 3G systems; a more generic

Authentication and Key Agreement (AKA) method has been developed. In addition, integrity

and stronger encryption mechanisms have been introduced However, due to the increasing

demand for ubiquitous connectivity and service provision, there is growing momentum to move

towards beyond 3G or 4G communication systems.

4G networks represent an open environment where different wireless technologies and service

providers share an IP-based core network to provide uninterrupted services to their subscribers

with almost the same quality of service (QoS).

A proposal of a 4G architecture is the Y-Comm framework [4] [5], which is been developed by a

number of institutions. Y-Comm details the functionalities and mechanisms required to support

heterogeneous networking.

It is no longer the case that security for communication frameworks is considered as an add-on

rather than a fundamental issue. Future communication systems consider security from the initial

stages of the design process. This is reflected in the design of 4G architectures such as Y-Comm

where security is considered as an integral part of the design. However, in order to develop an

efficient security module, it is necessary to identify the threats and risks faced by communication

systems. But since analyzing security requirements of communication systems is quite complex,

the ITU introduced a systematic analysis tool called X.805 [6] as a holistic approach to network

security by discussing systems security requirements at different levels and pinpointing potential

network vulnerabilities [6].

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

In this paper, we examine whether it is possible to use 3G security mechanisms such as AKA for

4G systems such as Y-Comm. The X.805 framework will be used to validate the AKA

mechanisms on Y-Comm, hence revealing what additional security measures are needed to

secure 4G systems. The rest of the paper is structured as follows: Section 2 gives the security

objectives in 4 G. Section 3 describes the architecture of the X.805 standard. Section 4 explains

the AKA protocol of 3G networks. Section 5 introduces the Y-Comm framework as an example

of 4G networks while Section 6 proposes deploying the AKA protocol with Y-Comm; this

proposal is analyzed using the X.805 standard in Section 7. The results of the analysis and

related work are summarized in Section 8. Lastly the paper concludes in the final section.

II. SECURITY OBJECTIVES

Wireless security is really a combination of wireless channel security (security of the radio

transmission) and network security (security of the wired network through which the data flows).

These collectively can be referred to as "wireless network security"[14]. But this still does not

explain the security aspect. In a digital realm, security almost always means "information

security." Therefore, we can use the information security model proposed by the National

Security Telecommunications and Information Systems Security Committee (NSTISSC).

Given below are the goals that the security policy and corresponding technology should achieve.

• Availability—The ongoing availability of systems addresses the processes, policies, and

controls used to ensure authorized users have prompt access to information. This objective

protects against intentional or accidental attempts to deny legitimate users access to information

or systems.

• Integrity of Data or Systems—System and data integrity relate to the processes, policies, and

controls used to ensure information has not been altered in an unauthorized manner and that

systems are free from unauthorized manipulation that will compromise accuracy, completeness,

and reliability.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

• Confidentiality of Data or Systems—Confidentiality covers the processes, policies, and

controls employed to protect information of customers and the institution against unauthorized

access or use.

• Accountability—Clear accountability involves the processes, policies, and controls necessary

to trace actions to their source. Accountability directly supports nonrepudiation, deterrence,

intrusion prevention, security monitoring, recovery, and legal admissibility of records.

* Assurance—Assurance addresses the processes, policies, and controls used to develop

confidence that technical and operational security measures work as intended. Assurance levels

are part of the system design and include availability, integrity, confidentiality, and

accountability. Assurance highlights the notion that secure systems provide the intended

functionality while preventing undesired actions.

III. INTRODUCTION TO THE X.805 STANDARD

As described in [6], the X.805 standard proposes three security layers (applications, services and

infrastructure), three security planes (end user, control and management) which are identified

based on the activities performed over the network, and eight security dimensions to address

general system vulnerabilities (access control, authentication, non-reputation, data

confidentiality, communication security, data integrity, availability, and privacy).

Figure 1 shows the complete architecture of the X.805 standard including Security Layers, Planes

and dimensions. The security layers of X.805 standard have already been applied to different

communication systems such as WiFi, ATM and IP-based networks [7] [6] respectively.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

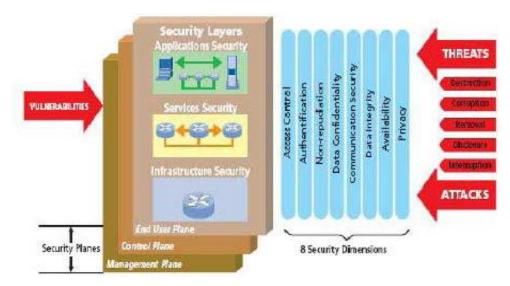


Figure 1. The X.805 standard architecture [4]

IV. THE USE OF THE AUTHENTICATION AND KEY AGREEMENT (AKA) PROTOCOL IN 3G NETWORKS

This section describes in some detail the AKA protocol [1] used in 3G networks. The AKA protocol follows the steps shown in the table.

Table I. AKA Steps in 3G networks

STEPS	ACTIONS	DESCRIPTION
	MS	Initial stage, the message includes Mobile Station's
1.	Sign-on ↓	(MS) security preferences is sent to the Base Station
	BSc1/ SRNC1	Controller/ Serving Radio Network Controller
		(BSC/SRNC)
	BSc1/ SRNC1	BSc1 consults the Serving GPRS Support Node/
2.	\downarrow	Visitor Location Register (SGSN/VLR) whether to
	SGSN 1/VLR1	allow MS to join or not

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

	SGSN 1/VLR1	VLR1 asks the Home Location Register (HLR) to
3.	\downarrow	send a set of security parameters attached to ms
	HLR	
	Ki	HLR gets the key Ki from the Authentication Server
	HLR	(AuC) and uses it along with other parameters [1] to
4.	\leftrightarrow	generate a Security Vector (SV) using F1- F2
	AuC	functions
	SV generating using	
	the F1-F5 functions	
_	HLR	HLR sends SV to the VLR1
5.	SV↓	
	VLR1/SGSN1	
	VLR1/SGSN1	VLR1/SGSN1 sends a random value (RAND) and
6.	RAND &↓ AuTN	authentication token (AuTN) [1] to MS as a
	MS	challenge
	Mutual authentication	MS compares regenerated SV's parameters to have
7.	between the network and MS	mutual authentication
8.	BSc1/ SRNC1	BSC/SRNC sends back an integrity protected list of
	MS	MS's security preferences Although

Although weaknesses have been shown on the basic AKA protocol improvements such as X AKA and EAKAP [8][3], these weaknesses were not related to the basic architecture of the AKA protocol, but rather to the underlying functions used to achieve some security aspects. Therefore, many projects such as the Third Generation Partnership Project 3GPP project [9] use this protocol for network-level security.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

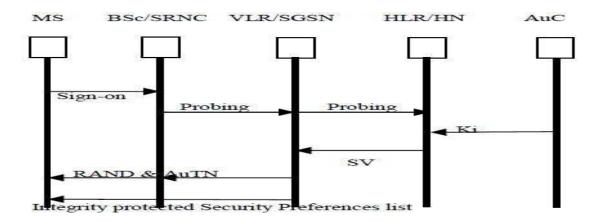


Figure 2. AKA architecture for 3G network

V. INTRODUCTION TO Y-COMM

As previously mentioned, Y-Comm is an example of a 4G system. The complete structure of Y-Comm is shown in Figure 3.

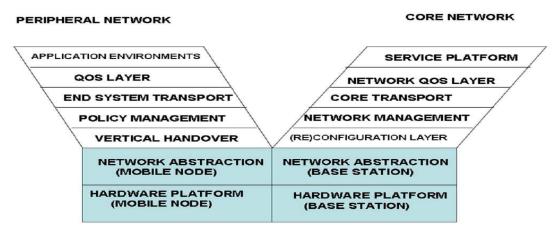


Figure 3. Y-Comm architecture [5]

A very detailed explanation of the Y-Comm design is given in [4] and [5]. For Y-Comm to support mobileinitiated vertical handover, four layers are mainly concerned: in the peripheral framework we have the Policy Management Layer (PML) which helps the mobile device to

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

decide when and why to handover as well as the Vertical Handover Layer (VHL) which is responsible for initiating, executing and terminating handover procedures. While in the Core framework we have the Network Management Layer (NML) that maintains all neighbouring networks characteristics and the Reconfiguration Layer (REL)which manages and controls network entities and resources to accommodate the handover.

The Y-Comm architecture in the core network is distributed and hence we can map into 3G/UMTS infrastructure as shown in Figure 4.

Figure 4. Mapping Y-Comm onto Mobile Infrastructure [14] However, it should be emphasized that Y-Comm is a 4G system and hence it supports several different wireless systems simultaneously. Hence Y-Comm supports different types of MSCs / SGSNs in addition to using media independent handover mechanisms such as IEEE 802.21 [17] to support vertical handover.

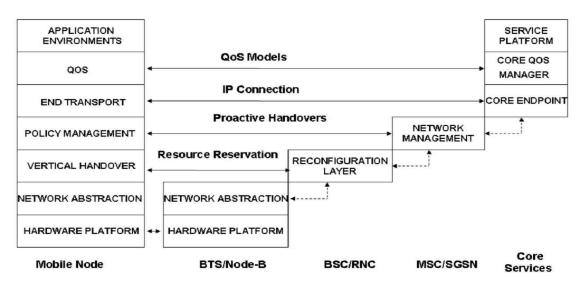


Figure 4. Mapping Y-Comm onto Mobile Infrastructure [14]

It has been shown that the aforementioned AKA protocol is adequate for 3G based networks, this is due to a set of issues related to the architecture of the network.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

However, due to 4G networks' new features (all IP-Based connections, heterogeneous

environment controlled by different operators), new mechanisms are proposed to support

functions such as Vertical Handover. In fact, there is a need to cope with the complexity,

openness and dynamics of 4G networks. Therefore, deploying current security mechanisms with

future 4G networks is still an open question.

VI. AKA PROTOCOL WITH Y-COMM

This section proposes an AKA protocol based on [1] to be deployed with Y-Comm in order to

protect the network resources while performing a vertical handover [4]. In this example,

MSC1/SGSN1 and SRNC1 represent the first network, while MSC2/SGSN2 and SRNC2

represent the second. By building on the mobile-initiated mobility model proposed in [10], AKA

might be implemented as follows (see Figure 5).

1. It is assumed that the MS has already joined a network and has been authenticated and has

agreed with the networkon the set of keys. The MS probes the network management layer

(NML) in the core network to know about available networks [10].

2. Based on the characteristics of neighboring networks, the Policy Management Layer (PML) of

the MS decides the target network [10].

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

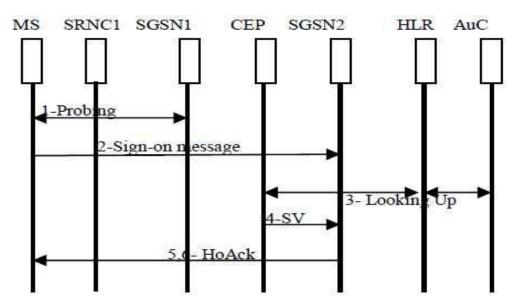


Figure 5. 3G AKA in Y-comm

- 3. The MS sends a sign-on message to the Core endpoint specifying the target network; this message contains the MS' unique identifier and Key Set Identifier (KSI) which identifies the set of keys (CK, IK, AK) already established and used with the current VLR (VLR1).
- 4. When SGSN2/VLR2 receives the sign-on message; it checks with HLR to authenticate the MS and gets the corresponding security vector (SV). If the Lease Time field (LT) of the MS' security vector (SV) is about to expire (beyond a threshold, e.g., 80% of the time elapsed), HLR and AuC generate a new Security Vector for the MS to be used in the new network (SGSN2). HLR sends (SV) to SGSN2/MSC2/VLR2 thus the MS is authenticated and authorized to use the network. In the case where LT is above the threshold, there is no need to re-generate a new set of keys.
- 5. MSC2/SGSN2 informs BSc2/SRNC2 of the handover and asks it to reserve a channel for the Mobile device. Once a channel is allocated, SRNC2 acknowledges that back to MSC2/SGSN2 which passes it to Core End- Point (CEP).
- 6. CEP sends Hand Over Acknowledgment (HOAck) message to the MS.
- 7. The MS needs to authenticate the new network (MSC2/VLR2). Therefore, once the MS joins the network, SGSN2 sends a challenge message containing the new AuTN and RAND (AuTN2,

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

RAND2). MS follows the same procedure to verify the network Sequence number and MAC, and authenticate the network.

VII. ANALYSIS OF AKA ON Y-COMM USING THE X.805 STANDARD

In this section we apply the X.805 standard to analyze the performance of the AKA protocol, proposed in a previous section. Since AKA protocols aim to provide network-level security, the functionality of this set of protocols is only related to the Infrastructure Layer of the X805 standard which is concerned with the security of network links and elements.

As previously mentioned, each layer is decomposed into three planes and for each plane the following eight vulnerabilities corresponding to the security dimensions of X.805 is examined as shown in Figure 6.

		Infrastructure layer
Management I	Plane	Module One
Control Pla	ne	Module Two
User Plane	В	Module Three
	Authentication	Data- integrity Availability
	Non-repudiation	Availability

Figure 6. X.805 standard for the AKA protocol

The Management plane is represented as Module 1, the Control plane is represented as Module 2 and the User plane is represented as Module 3. In the table below, each vulnerability is analyzed

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

relative to Module 1, 2 and 3. The remainder of this section discusses the security dimensions for each of the three modules.

Table II. Security vulnerabilities for each module

Vulnerabilities	Modules Involved
Access Control	Modules 1&2: no access control mechanisms such as Access Lists
	(ACLs) or Firewalls are applied to restrict the access to network
	resources Module3: Users' access allowance is based on the
	authentication process.
Authentication	Modules 1, 2 & 3: AKA protocol provides mutual authentication
	between the mobile device (but not the user) and the network.
Non-Repudiation	Modules 1,2 & 3: since AKA protocol uses symmetric key based
	mechanisms, no repudiation is not provided
Data Confidentiality	Modules 1, 2 & 3: data confidentiality for the connection between the
	mobile device and the MSc/SGSN is achieved using Cipher Key (CK)
	and F6 function as an encryption algorithm [1]. However, no
	encryption is done beyond MSc/ SGSN.
Communication	Modules 1 & 2: no specific security mechanisms are proposed to
Security	protect the data transmitted in the core network as it is considered
	physically secure.
	Module 3: from a user perspective, once authentication and key
	agreement processes are done, the security of the wireless part of the
	connection is guaranteed.
Data Integrity	Data Integrity Modules 1, 2 & 3: AKA provides Data Integrity by
	implementing Integrity Key (IK) and Hashing algorithm (F7) for the
	MS- MSc/SGSN connection.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

Availability	Module 1, 2 & 3: no specific mechanisms such as intrusion
	detections/protections are implemented to ensure network elements
	and services are available [6] and to make sure that network resources
	are immune against denial of service attacks.
Privacy	Module 1, 2 & 3: although confidentiality is achieved by using
	encryption, there is no guarantee that subscribers' credentials are only
	revealed to authorized parties.

VIII. RESULTS AND RELATED WORK

The key vulnerabilities indicated by this work include access control, communication security, data confidentiality, availability and privacy. These vulnerabilities are not seen in 3G networks because the network infrastructure is wholly owned by the network operators and access is denied to other network entities. However, such assumptions are no longer valid in 4G systems and therefore must be addressed in the proposed security architecture.

Moreover, since 4G is an IP-Based environment, it will suffer from most of the IP-specific security vulnerabilities found in the Internet. Our experience of the Internet as the best example of a successful open architecture has taught us that it is not sufficient to only protect data but it is also necessary to protect entities from each other (DoS, Spam) and also to protect the network infrastructure. Hence 4G systems must also address these concerns. The IETF handover keying working group (HOKEY WG) [12] is currently working on a new mechanism to support intertechnology handover which deploys the Extensible Authentication Protocol (EAP) [13] to support handover key distribution. We are exploring how we might use this mechanism in our secure vertical handover model.

IX. CONCLUSION:

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

In this paper we have demonstrated that the security requirements for 4G systems are much greater than those of 3G. A lot of this is due to the fact that in 4G systems we require a more open architecture with its inherent security vulnerabilities compared to the closed network of 3G systems. These requirements clearly indicate that we need an integrated security module to protect data across different networks and in addition, we need targeted security models to protect various entities: users, servers and network.

REFERENCES:

- [1] P, Chandra, "Bulletproof wireless security: GSM, UMTS, 802.11 and ad hoc security," Newnes. Oxford, pp. 129-158, 2005.
- [2] J.H. Schiller." Mobile communications", 2nd ed. London : Addison-Wesley , pp. 136-154, 2003.
- [3] F. Farhat, S. Salimi, and A. Salahi. "An Extended Authentication and Key Agreement Protocol of UMTS". In Lecture Notes in Computer Science Proceedings of the 5th International Conference on Information Security Practice and Experience, Xi'an, China, pp. 230-244, 2009.
- [4] G. Mapp, D.N. Cottingham, F. Shaikh, P. Vidales, L. Patanapongpibul, J. Balioisian, and J. Crowcroft, "An Architectural Framework for Heterogeneous Networking". International Conference on Wireless Information Networks and Systems (WINSYS), pp. 5-10. August 2006.
- [5] G.E. Mapp, F. Shaikh, D. Cottingham, J. Crowcroft, and J. Beliosian. "Y-Comm: A Global Architecture for Heterogeneous Networking". (Invited Paper). 3rd Annual International Wireless Internet Conference (WICON 2007), October 2007.
- [6] Z. Zeltsan. "ITU-T RecommendationX.805 and its application to NGN". www.itu.int/ITUT/worksem/ngn/2005/s5-zelstan.pdf.
- [7] Bell Labs, "The Bell Labs Security Framework: Making the Case for End-to-End Wi-Fi Security," http://www.forsitegroup.com/pdf/wplucent_wifi_security.pdf. [Accessed 16.Feb. 2010].

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

- [8] C.M. Huang and J.W. Li, "Authentication and Key Agreement Protocol for UMTS with Low Bandwidth Consumption". In: Proceedings of the 19th International Conference on Advanced Information Networking and Applications, Washington, DC, USA, vol.1, pp. 392-397, 2005.
- [9] M. Garcia-Martin. "Input 3rd-Generation Partnership Project (3GPP) Release 5 Requirements on the Session Initiation Protocol (SIP)". RFC 4083, May 2005. http://www.packetizer.com/rfc/rfc4083..
- [10] G. Mapp, F. Shaikh, M. Aiash, R. Porto Vanni, M. Augusto, and E. Moreira," Exploring Efficient Imperative Handover Mechanisms for HeterogeneousWireless Networks",International Symposium on Emerging Ubiquitous and Pervasive Systems (EUPS-09) August 2009.
- [11] Institute of Electrical and Electronics Engineers. IEEE802.21/D8.0, Draft Standard for Local and Metropolitan Area Networks: Media Independent Handover Services, December 2007.
- [12] Handover keying working group (hokey wg). IETF. http://www.ietf.org/html.charters/hokey-charter.html [Accessed 16. Feb. 2010].
- [13] B. Aboba, L. Blunk, J. Vollbrecht, and J. Carlson. RFC 3748, "Extensible Authentication Protocol (EAP)". IETF, June 2004. http://www.ietf.org/rfc/rfc3748.txt. [Accessed 16 Feb 2010]. [14] Russell, S.F. "Wireless network security for users," Information Technology: Coding and

Computing (2001): 172–177.